RUSSIAN JOURNAL OF FOREST SCIENCE, 2021, No. 6, P. 609–626


GEOSPATIAL MODELING OF BIOMETRIC AND STRUCTURAL FOREST ATTRIBUTES IN THE BRYANSK OBLAST BASED ON SATELLITE IMAGERY AND SELECTIVE INVENTORY DATA
E. A. Gavrilyuk, N. V. Koroleva, D. A. Karpukhina, E. N. Sochilova, D. V. Ershov

Center for Forest Ecology and Productivity of the Russian Academy of Sciences (CEPF RAS) Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997 Russia
E-mail: egor@ifi.rssi.ru


Received 31 March 2021
The geospatial modeling capabilities of biometric (stand age, height, stem diameter, growing stock volume) and structural (coniferous and deciduous species stock ratio) forests attributes based on Landsat multi-seasonal satellite imagery and selective forest inventory data at regional scale, specifically for the Bryansk oblast of Russian Federation, were assessed. The reference sample for models training and testing was obtained from taxation descriptions for approximately 10000 forest sites with a total area of about 35 thousand hectares. Used satellite data were temporary synchronized with a period of taxation works (2002-2005). The main stages of geospatial modeling, including the compositing of multi-seasonal mosaic images, the calculation of spectral variables and the extraction of their values in the locations of reference sites, the training of Random forest regression models and the prediction over the study area, was performed on the Google Earth Engine cloud platform. The best results were obtained for coniferous and deciduous species stock ratio models – coefficient of determination R2 = 0.7 with a scaled root-mean-square error RMSE = 22%. For biometric attributes R2 varied from 0.4 for stand age to 0.5 for growing stock volume, and RMSE was in the range of 26–37%. Such accuracy levels are fully consistent with the results of similar Russian and foreign studies. The obtained thematic products demonstrated high convergence with official statistics data at forestry scale: squared correlation coefficient r2 = 0.98 with a scaled mean deviation MD = 5% for the forested area and r2 = 0.96 with MD = 8.6% for the total growing stock. To conclude, the combination of the initial data and methods of their processing described in our work can be used for obtaining reliable estimates of the biometric and structural forest attributes, at least, at the federal subject’s scale.
Keywords: forest stand age, forest stand height, tree stem diameter, growing stock volume, coniferous and deciduous species ratio, remote sensing, Landsat, Random Forest, Google Earth Engine.
Acknowledgements: This study was performed within the framework of the state assignment of the CEPF RAS no. АААА-А18-118052590019-7 (data processing), and was financially supported by the Russian Science Foundation project no. 19-77-30015 (data collection and scripting).
DOI: 10.31857/S002411482106005X


REFERENCES



  • Altmann A., Tolosi L., Sander O., Lengauer T., Permutation importance: a corrected feature importance measure, Bioinformatics, 2010, Vol. 26, pp. 1340-1347.

  • Astola H., Hame T., Sirro L., Molinier M., Kilpi J., Comparison of Sentinel-2 and Landsat 8 imagery for forest variable prediction in boreal region, Remote Sensing of Environment, 2019, Vol. 223, pp. 257‒273.

  • Barredo J.I., Bastrup-Birk A., Teller A., Onaindia M., Fernández de Manuel B., Madariaga I., Rodríguez-Loinaz G., Pinho P., Nunes A., Ramos A., Batista M., Mimo S., Cordovil C., Branquinho C., Grêt-Regamey A., Bebi P., Brunner S.H., Weibel B., Kopperoinen L., Itkonen P., Viinikka A., Chirici G., Bottalico F., Pesola L., Vizzarri M., Garfì V., Antonello L., Barbati A., Corona P., Cullotta S., Giannico V., Lafortezza R., Lombardi F., Marchetti M., Nocentini S., Riccioli F., Travaglini D., Sallustio L., Rosário I., Essen M., Nicholas K.A., Máguas C., Rebelo R., Santos-Reis M., Santos-Martín F., Zorrilla-Miras P., Montes C., Benayas J., Martín-López B., Snäll T., Berglund H., Bengtsson J., Moen J., Busetto L., San-Miguel-Ayanz J., Thurner M., Beer C., Santoro M., Carvalhais N., Wutzler T., Schepaschenko D., Shvidenko A., Kompter E., Ahrens B., Levick S.R., Schmullius C., Mapping and assessment of forest ecosystems and their services – Applications and guidance for decision making in the framework of MAES. EUR 27751 EN, 2015, 82 p.

  • Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A., Shabanov N.V., Sputnikovoe kartografirovanie rastitel'nogo pokrova Rossii (Satellite mapping of vegetation cover of Russia), Moscow: Izd-vo IKI RAN, 2016, 208 p.

  • Breiman L., Out-of-bag estimation, In: Technical report. Berkeley: Statistics Department University of California, 1996, pp. 1–13.

  • Breiman L., Random forests, Machine Learning, 2001, Vol. 45. No. 1, pp. 5–32.

  • Brockerhoff E.G., Barbaro L., Castagneyrol B., Forrester D.I., Gardiner B., González-Olabarria J.R., Lyver P.O., Meurisse N., Oxbrough A., Taki H., Thompson I.D., Plas F., Jactel H., Forest biodiversity, ecosystem functioning and the provision of ecosystem services, Biodiversity and Conservation, 2017, Vol. 26, pp. 3005–3035.

  • Brosofske K.D., Froese R.E., Falkowski M.J., Banskota A., A Review of Methods for Mapping and Prediction of Inventory Attributes for Operational Forest Management, Forest Science, 2014, Vol. 60, No. 4, pp. 733–756.

  • Brown C.E., Coefficient of Variation, In: Applied Multivariate Statistics in Geohydrology and Related Sciences, Berlin, Heidelberg: Springer, 1998, 248 p.

  • Chumachenko S.I., Palenova M.M., Pochinkov S.V., Kukharkina E.V., Imitatsionnoe modelirovanie dinamiki nasazhdenii. FORRUS-S – instrument vybora strategii i planirovaniya lesnogo khozyaistva (Simulation of the stand dynamics. FORRUS-S - a testing tool of strategic options and forest management planning), Vestnik Moskovskogo gosudarstvennogo universiteta lesa - Lesnoi vestnik, 2007, No. 5, pp. 143-152.

  • Crippen R.E., Calculating the vegetation index faster, Remote Sensing of Environment, 1990, Vol. 34, pp. 71–73.

  • Danilova I.V., Korets M.A., Ryzhkova V.A., Kartografirovanie vozrastnykh stadii lesnoi rastitel'nosti na osnove analiza raznosezonnykh sputnikovykh izobrazhenii Landsat (Regenerating vegetation age stages mapping based on multi-seasonal landsat satellite imagery), Issledovanie Zemli iz kosmosa, 2017, No. 4, pp. 12‒24.

  • Denisova A.Y., Kavelenova L.M., Korchikov E.S., Prokhorova N.B., Terent'eva D.A., Fedoseev B.A., Prostranstvennaya klassifikatsiya preobladayushchikh drevesnykh porod na territorii Samarskoi oblasti po dannym Sentinel-2 i taksatsii lesa (Tree species classification in Samara region using Sentinel-2 remote sensing images and forest inventory data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2019, Vol. 16, No. 4, pp. 86‒101.

  • Fagan M., DeFries R., Measurement and Monitoring of the World’s Forests. A Review and Summary of Remote Sensing Technical Capability, 2009–2015. Resources for the Future Report, 2009, 129 р.

  • Fassnacht F., Latifi H., Stereńczak K., Modzelewska A., Lefsky M., Waser L., Straub C., Ghosh A., Review of studies on tree species classification from remotely sensed data, Remote Sensing of Environment, 2016, Vol. 186, pp. 64–87.

  • Friedl M., Gray J., Sulla-Menashe D., MCD12Q2 MODIS/Terra+Aqua Land Cover Dynamics Yearly L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. 2019. Available at: https://doi.org/10.5067/MODIS/MCD12Q2.006 (December 02, 2020).

  • Gavrilyuk E.A., Gornov A.V., Ershov D.V., Otsenka prostranstvennogo raspredeleniya vidov derev'ev zapovednika «Bryanskii les» i ego okhrannoi zony na osnove raznosezonnykh sputnikovykh dannykh Landsat (Estimation of spatial trees species distribution in Bryansk Forest Nature Reserve based on multitemporal Landsat data), Byulleten' Bryanskogo otdeleniya RBO, 2018, No. 3(15), pp. 13–23.

  • Giryaev M.D., Teoreticheskie osnovy lesoustroistva i sovremennoe lesnoe zakonodatel'stvo (Theoretical basis of modern forest management and forest law), Lesokhozyaistvennaya informatsiya, 2017, No. 2, pp. 5–15.

  • Gómez C., White J.C., Wulder M.A., Optical remotely sensed time series data for land cover classification: A review, ISPRS Journal of Photogrammetry and Remote Sensing, 2016, Vol. 116, pp. 55-72.

  • Gorelick N., Hancher M., Dixon M., Ilyushchenko S., Thau D., Moore R., Google Earth Engine: Planetary-scale geospatial analysis for everyone, Remote Sensing of Environment, 2017, Vol. 202, pp. 18–27.

  • Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G., High-Resolution Global Maps of 21st-Century Forest Cover Change, Science, 2013, Vol. 342, pp. 850–853.

  • http://www.esa.int/Our_Activities/Observing_the_Earth/Copernicus/Sentinel-2 (March 24, 2021).

  • https://bryanskleshoz.ru/otkrytye-dannye/ (March 25, 2021).

  • https://gks.ru/bgd/regl/b20_14p/Main.htm (March 25, 2021).

  • https://terra.nasa.gov/about/terra-instruments/modis (March 24, 2021)

  • https://www.usgs.gov/core-science-systems/nli/landsat/landsat-7?qt-science_support_page_related_con=0#qt-science_support_page_related_con (March 24, 2021).

  • https://www.usgs.gov/land-resources/nli/landsat (March 24, 2021).

  • Jiang Z., Huete A.R., Didan K., Miura T., Development of a two-band enhanced vegetation index without a blue band, Remote Sensing Environment, 2008, Vol. 112, pp. 3833–3845.

  • Komarov A., Chertov O., Zudin S., Nadporozhskaya M., Mikhailov A., Bykhovets S., Zudina E., Zoubkova E., EFIMOD 2 - a model of growth and cycling of elements in boreal forest ecosystems, Ecological Modelling, 2003, Vol. 170, No. 2-3, pp. 373-392.

  • Kumar L., Mutanga O., Google Earth Engine Applications since Inception: Usage, Trends, and Potential, Remote Sensing, 2018, No. 10, pp. 1509.

  • Kurbanov E.A., Vorob'ev O.N., Nezamaev S.A., Gubaev A.V., Lezhnin S.A., Polevshchikova Y.A., Tematicheskoe kartirovanie i stratifikatsiya lesov Mariiskogo Zavolzh'ya po sputnikovym snimkam Landsat (Thematic mapping and stratification of forests in Middle Zavolsgie by Landsat satelite images), Vestnik Povolzhskogo gosudarstvennogo tekhnologicheskogo universiteta. Seriya: Les. Ekologiya. Prirodopol'zovanie, 2013, No. 3(19), pp. 82‒92.

  • Landsberg J., Modelling forest ecosystems: state of the art, challenges, and future directions, Canadian Journal of Forest Research, 2003, Vol. 33, No. 3, pp. 385-397.

  • Lechner A.M., Foody G.M., Boyd D.S., Applications in Remote Sensing to Forest Ecology and Management, One Earth, 2020, Vol. 2, No. 5, pp. 405-412.

  • Lesnoi plan Bryanskoi oblasti (po sostoyaniyu na 2008 g.) (Forest planning of Bryansk region (as of 2008)). Available at: https://www.bryanskleshoz.ru/lesnoy-plan-bryanskoy-oblasti/ (March 25, 2021).

  • Li H., available at: https://haifengl.github.io (March 24, 2021).

  • Lukina N.V., Geras'kina A.P., Gornov A.V., Shevchenko N.E., Kuprin A.V., Chernov T.I., Chumachenko S.I., Shanin V.N., Kuznetsova A.I., Teben'kova D.N., Gornova M.V., Bioraznoobrazie i klimatoreguliruyushchie funktsii lesov: aktual'nye voprosy i perspektivy issledovanii (Biodiversity and climate regulating functions of forests: current issues and prospects for research), Voprosy lesnoi nauki, 2020, Vol. 3, No. 4, pp. 1‒90.

  • Masek J.G., Vermote E.F., Saleous N.E., Wolfe R., Hall F.G., Huemmrich K.F., Gao F., Kutler J., Lim T.K., A Landsat surface reflectance dataset for North America, 1990-2000, IEEE Geoscience and Remote Sensing Letters, 2006, Vol. 3, No. 1, pp. 68–72.

  • Matasci G., Hermosilla T., Wulder M.A., White J.C., Coops N.C., Hobart G.W., Zald H.S., Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots, Remote Sensing of Environment, 2018, Vol. 209, pp. 90-106.

  • Otchet Schetnoi palaty Rossiiskoi Federatsii o rezul'tatakh kontrol'nogo meropriyatiya “Proverka effektivnosti organizatsii rabot i raskhodovaniya sredstv na provedenie lesoustroistva, vydelennykh iz byudzhetov byudzhetnoi sistemy Rossiiskoi Federatsii i inykh istochnikov v 2015–2019 godakh” (Report of the Accounts Chamber of the Russian Federation on the results of the control measure "Checking the effectiveness of the organization of work and spending of funds for forest management allocated from the budgets of the budgetary system of the Russian Federation and other sources in 2015-2019"), 2020, 40 p. Available at: https://ach.gov.ru/upload/iblock/f1e/f1ececa690699c189ed2eda14fff7413.pdf

  • R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, 2020, Vienna, Austria. Available at: https://www.R-project.org/

  • Rastitel'nost' evropeiskoi chasti SSSR (The vegetation of the European part of the USSR), Leningrad: Nauka, 1980, 429 p.

  • Sanchez-Ruiz S., Moreno-Martinez A., Izquierdo-Verdiguier E., Chiesi M., Maselli F., Gilabert M.A., Growing stock volume from multi-temporal Landsat imagery through Google Earth Engine, International Journal of Applied Earth Observation and Geoinformation, 2019, Vol. 83, No. 101913, pp. 1–10.

  • Schumacher J., Hauglin M., Astrup R., Breidenbach J., Mapping forest age using National Forest Inventory, airborne laser scanning, and Sentinel-2 data, Forest Ecosystems, 2020, Vol. 7, No. 1, pp. 1-14.

  • Senf C., Laštovička J., Okujeni A., Heurich M., van der Linden S., A generalized regression-based unmixing model for mapping forest cover fractions throughout three decades of Landsat data, Remote Sensing of Environment, 2020, Vol. 240, No. 111691, pp. 1‒10.

  • Shao Y., Di L., Bai Y., Guo B., Gong J., Geoprocessing on the Amazon cloud computing platform — AWS, First International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Shanghai, China, 2012, pp. 1–6.

  • Shit P.K., Pourghasemi H.R., Das P., Bhunia G.S., Spatial Modeling in Forest Resources Management: Rural Livelihood and Sustainable Development, Springer Nature, 2021, 675 p.

  • Sochilova E.N., Ershov D.V., Analiz vozmozhnosti opredeleniya zapasov drevesnykh porod po sputnikovym dannym Landsat ETM+ (Possibility analysis of stem volume of forests assessment using Landsat ETM data), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2012, Vol. 9, No. 3, pp. 277-282.

  • Sochilova E.N., Surkov N.B., Ershov D.B., Egorov B.A., Bartalev S.S., Bartalev S.A., Kartografirovanie klassov boniteta lesov Primorskogo kraya na osnove sputnikovykh izobrazhenii i dannykh o kharakteristikakh rel'efa (Mapping of forest site index classes in Primorskiy krai based on satellite images and terrain characteristics), Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2018б, Vol. 15, No. 5, pp. 96–109.

  • Sochilova E.N., Surkov N.V., Ershov D.V., Khamedov V.A., Otsenka zapasov fitomassy lesnykh porod po sputnikovym izobrazheniyam vysokogo prostranstvennogo razresheniya (na primere lesov Khanty-Mansiiskogo AO) (Assessment of biomass of forest species using satellite images of high spatial resolution (on the example of the forest of Khanty-Mansi autonomous okrug)), Voprosy lesnoi nauki, 2018а, Vol. 1, No. 1, pp. 1‒23.

  • Sokolov V.A., Problemy lesoustroistva v Rossii (Problems of forest planning in Russia), Sibirskii lesnoi zhurnal, 2021, No. 1, pp. 3–12.

  • Stuhler S., Leiterer R., Joerg P., Wulf H., Schaepman M., Technical Report: Generating a Cloud-Free, Homogeneous Landsat-8 Mosaic of Switzerland Using Google Earth Engine. 2016. Available at: https://doi.org/10.13140/rg.2.1.2432.0880 (December 29, 2020).

  • White J.C., Coops N.C., Wulder M.A., Vastaranta M., Hilker T., Tompalski P., Remote Sensing Technologies for Enhancing Forest Inventories: A Review, Canadian Journal of Remote Sensing, 2016, Vol. 42, No. 5, pp. 619‒641.

  • Wright M.N., Ziegler A., A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, Journal of Statistical Software, 2017, Vol. 77, No. 1, pp. 1‒17.

  • Wulder M.A., Loveland T.R., Roy D.P., Crawford C.J., Masek J.G., Woodcock C.E., Allen  R.G., Anderson M.C., Belward A.S., Cohen W.B., Dwyer J., Erb A., Gao F., Griffiths P., Helder D., Hermosilla T., Hipple J.D., Hostert P., Hughes M.J., Huntington J., Johnson D.M., Kennedy R., Kilic A., Li Z., Lymburner L., McCorkel J., Pahlevan N., Scambos T.A., Schaaf C., Schott J.R., Sheng Y., Storey J., Vermote E., Vogelmann J., White J.C., Wynne R.H., Zhu Z., Current status of Landsat program, science, and applications, Remote Sensing of Environment, 2019, Vol. 225, pp. 127–147.

  • Yu X., Hyyppä J., Karjalainen M., Nurminen K., Karila K., Vastaranta M., Kankare V., Kaartinen H., Holopainen M., Honkavaara E., Kukko A., Jaakkola A., Liang X., Wang Y., Hyyppä H., Katoh M., Comparison of Laser and Stereo Optical, SAR and InSAR Point Clouds from Air- and Space-Borne Sources in the Retrieval of Forest Inventory Attributes, Remote Sensing, 2015, Vol. 7, No. 12, pp. 15933‒15954.

  • Zhao P., Lu D, Wang G, Wu C, Huang Y., Yu S., Examining Spectral Reflectance Saturation in Landsat Imagery and Corresponding Solutions to Improve Forest Aboveground Biomass Estimation, Remote Sensing, 2016, Vol. 8, No. 469, pp. 1‒26.

  • Zharko V.O., Bartalev S.A., Sidorenkov V.M., Forest growing stock volume estimation using optical remote sensing over snow-covered ground: a case study for Sentinel-2 data and the Russian Southern Taiga region, Remote Sensing Letters, 2020, Vol. 11, No. 7, pp. 677‒686.