RUSSIAN JOURNAL OF FOREST SCIENCE, 2021, No. 6, P. 566–580


FORESTS’ FUNCTIONAL CLASSIFICATION: RELEVANCE AND APPROACHES TO DEVELOPMENT
N. V. Lukina, A. P. Geraskina, A. I. Kuznetsova, V. E. Smirnov, A. V. Gornov,
N. Ye. Shevchenko, Ye. V. Tikhonova, D. N. Tebenkova, Ye. V. Basova

Center for Forest Ecology and Productivity of the Russian Academy of Sciences
Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russia
E-mail:
nvl07@yandex.ru


Received 30 June 2021
The article substantiates the relevance of the development of a forests’ functional classification based on the efficiency of their ecosystem functions’ performance. Using the example of nine types of coniferous-deciduous forests that dominate the European part of Russia, functioning in autonomous landscape positions, a possible approach to assessing their performance in terms of the carbon cycle regulation function is demonstrated based on the relationships between informative indicators of the composition of vegetation, the soil macrofauna, and the ecosystem processes associated with the soil carbon sequestration. The lowest level of soil carbon accumulation is characteristic for coniferous-broad-leaved forests on sandy soils, with low functional diversity and low biomass of earthworms. A higher stock of soil carbon was found in forests with a composition of vegetation with a more even ratio of plants’ functional groups with rapidly and slowly decaying litter. This is due to the creation of trophic and topical conditions favourable for the functioning of earthworms, who are in turn active processors of litter in coniferous-deciduous forests. A large-scale assessment of the relationship between vegetation, soil biota and ecosystem processes that forms the regulating function of carbon cycle in Russian forests is an urgent scientific task due to the looming problems of climate change. Based on the effectiveness assessment of various ecosystem functions’ supply by forests of different types, identified in Russia using vegetation classifications, a functional forest classification can be created.
Key words: coniferous-deciduous forests, functional classification, carbon, vegetation, earthworms, functional groups.
Acknowledgements: The study has been conducted within the framework of the State Contract № AAAA-A18-118052590019-7 with CEPF RAS.
DOI: 10.31857/S0024114821060085


REFERENCES



  • Akkumulyatsiya ugleroda v lesnykh pochvakh i suktsessionnyi status lesov (Carbon accumulation in forest soils and forest succession status), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2018, 232 p.

  • Alekseev E.V., Tipy Ukrainskogo lesa. Pravoberezh'e (Types of the Ukrainian forest. Right bank), Kiev: 1928, 120 p.

  • Babenko A.C., Pochvennye bespozvonochnye kak indikatory sostoyaniya territorii (Soil invertebrates as indicator of territory pollution), Geochemistry of living substance, Proc. of International youth school, Tomsk, June 2-5, 2013, Tomsk, 2013, pp. 40–42.

  • Bartalev S.A., Stytsenko F.V., Sputnikovaya otsenka gibeli drevostoev ot pozharov po dannym o sezonnom raspredelenii proidennoi ognem ploshchadi (An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas), Lesovedenie, 2021, No. 2, pp. 115–122.

  • Berg B., McClaugherty C., Plant Litter. Decomposition, Humus Formation, Carbon Sequestration, Springer Cham, 2020, 332 р.

  • Bobrovskii M.V., Lesnye pochvy Evropeiskoi Rossii. Bioticheskie i antropogennye faktory formirovaniya (Forest soil in European Russia: biotic and anthropogenic factors in pedogenesis), Moscow: KMK, 2010, 359 p.

  • Braslavskaya T.Y., Zaugol'nova L.B., Klassifikatsiya i tipologiya lesnoi rastitel'nosti kak instrument issledovaniya lesnogo pokrova (Classification and typology of forest vegetation as a tool for studying forest cover), In: Metodicheskie podkhody k ekologicheskoi otsenke lesnogo pokrova v basseine maloi reki (Methodical approaches to environmental assessment of forest cover in a small catchment), Moscow: Tovarishchestvo nauchnykh izdanii KMK, 2010, pp. 56–71.

  • Cadisch G., Giller K.E., Driven by Nature: Plant Litter Quality and Decomposition, Wallingford: CAB International, 1997, 432 р.

  • Cao J., Wang C., Dou Z., Liu M., Ji D., Hyphospheric impacts of earthworms and arbuscular mycorrhizal fungus on soil bacterial community to promote oxytetracycline degradation, J. Hazard Mater, 2018, Vol. 341, pp. 346–354.

  • Chernov Y.I., Prirodnaya zonal'nost' i zhivotnyi mir sushi (Natural zoning and fauna of the terrestrial area), Moscow: Nauka, 1975, 225 p.

  • Chevan A., Sutherland M., Hierarchical partitioning, The American Statistician, 1991, Vol. 45, pp. 90–96.

  • Cornelissen J.H., Lang S.I., Soudzilovskaia N.A., During H.J., Comparative cryptogam ecology: A review of bryophyte and lichen traits that drive biogeochemistry, Annals of Botany, 2007, Vol. 99, pp. 987–1001.

  • Framstad E., Wit H., Mäkipää R., Larjavaara M., Vesterdal L., Karltun E., Biodiversity, Carbon Storage and Dynamics of Old Northern Forests, Copenhagen, Denmark, 2013.

  • Frouz J., Livečková M., Albrechtová J., Chroňáková A., Cajthaml T., Pižl V., Háněl L., Starý J., Baldrian P., Lhotáková Z., Šimáčková H., Cepáková Š., Is the effect of trees on soil properties mediated by soil fauna? A case study from post-mining sites, Forest Ecology and Management, 2013, Vol. 309, pp. 87–95.

  • Geraskina A., Shevchenko N., Distribution of epi-endogeic and endogeic earthworm species (Oligochaeta: Lumbricidae) in the forest belt of the Northwest Caucasus, Zootaxa, 2021, Vol. 4975, No 3, pp. 561–573.

  • Geras'kina A.P., Preobrazovaniya kompleksa dozhdevykh chervei v khode poslerubochnykh suktsessii v lesakh Severo-Zapadnogo Kavkaza (Transformations of earthworm communities during post-logging successions in the forests of the Northwest Caucasus), Voprosy lesnoi nauki, 2018, No. 1, pp. 1–14.

  • Geras'kina A.P., Vliyanie dozhdevykh chervei raznykh morfo-ekologicheskikh grupp na akkumulyatsiyu ugleroda v lesnykh pochvakh (Impact of earthworms of different morpho-ecological groups on carbon accumulation in forest soils), Voprosy lesnoi nauki, 2020, Vol. 3, No. 2, pp. 1–20.

  • Gilyarov M.S., Uchet krupnykh bespozvonochnykh (mezofauny) (Large invertebrates count (mesofauna)), In: Metody pochvenno-zoologicheskikh issledovanii (Methods of soil-zoological research), Moscow Nauka, 1975, pp. 12–29.

  • Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kazakova A.I., Ruchinskaya E.V., Tebenkova D.N., Otsenka suktsessionnogo statusa khvoino-shirokolistvennykh lesov evropeiskoi chasti Rossii na osnove populyatsionnogo podkhoda (Population-based assessment of succession stage of mixed forests in European part of Russia), Lesovedenie, 2018, No. 6, pp. 16-30.

  • Huang W., Gonzalez G., Zou X., Earthworm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis, Applied Soil Ecology, 2020, Vol. 150, pp. 1–15.

  • Jabiol J., Lecerf A., Lamothe S., Gessner M., Chauvet E., Litter quality modulates effects of dissolved nitrogen on leaf decomposition by stream microbial communities, Microbial Ecology, 2019, Vol. 77, No. 4, pp. 959–966.

  • Kayander A.K., Sushchnost' i znachenie tipov lesa (Essence and significance of forest types), Moscow: Goslestekhizdat, 1933, 36 p.

  • Kazakova A.I., Semikolennykh A.A., Gornov A.V., Gornova M.V., Lukina N.V., Vliyanie rastitel'nosti na labil'nye kharakteristiki lesnykh pochv zandrovykh mestnostei zapovednika “Bryanskii les” (Influence of vegetation on lability characteristics of soils of zander locations of Bryansky Forest Nature Reserve), Vestnik Moskovskogo universiteta. Seriya 17: Pochvovedenie, 2018, No. 3, pp. 9–15.

  • Kholkhoeva L.S., Nekotorye osobennosti rasprostraneniya dozhdevykh chervei po tipam pochv Levoberezhnoi Ukrainy (Some features of the distribution of earthworms according to the types of soils of the Left-Bank Ukraine), Izvestiya Khar'kovskogo entomologicheskogo obshchestva, 1993, Vol. 2, No. 1, pp. 125–130.

  • Klassifikatsiya i diagnostika pochv Rossii (Classification and recognition of soils in Russia), Smolensk: Oikumena, 2004, 342 p.

  • Krishna M.P., Mohan M., Litter decomposition in forest ecosystems: a review, Energy, Ecology and Environment, 2017, Vol. 2, No. 4, pp. 236–249.

  • Kurakov A.V., Kharin S.A., Byzov B.A., Changes in the composition and physiological and biochemical properties of fungi during passage through the digestive tract of earthworms, Biological Bulletin, 2016, Vol. 43, pp. 290–299.

  • Kurbatova J., Tatarinov F., Molchanov A., Varlagin A., Avilov V., Kozlov D., Valentini R., Partitioning of ecosystem respiration in a paludified shallowpeat spruce forest in the southern taiga of European Russia, Environmental Research Letters, 2013, Vol. 8, No. 4, pp. 045028.

  • Kurganova I.N., Emissiya i balans dioksida ugleroda v nazemnykh ekosistemakh Rossii. Diss. d-ra biol. nauk (Emission and balance of carbon dioxide in terrestrial ecosystems of Russia. Doctor's biol. sci. thesis), Moscow: MGU, 2010, 325 p.

  • Kuznetsova A.I., Lukina N.V., Tikhonova E.V., Gornov A.V., Gornova M.V., Smirnov V.E., Geraskina A.P., Shevchenko N.E., Tebenkova D.N., Chumachenko S.I., Carbon stock in sandy and loamy soils of coniferous–broadleaved forests at different succession stages, Eurasian Soil Science, 2019, Vol. 52, No. 7, pp. 756-768.

  • Lavelle P., Decaëns T., Aubert M., Barot S., Blouin M., Bureau F., Rossi J.P., Soil invertebrates and ecosystem service, European Journal of Soil Biology, 2006, Vol. 42, pp. 3–15.

  • Lukina N.V., Orlova M.A., Teben’kova D.N., Ershov V.V., Gorbacheva T.T., Isaeva L.G., Assessment of soil water composition in the northern taiga coniferous forests of background territories in the industrially developed region, Eurasian Soil Science, 2018, Vol. 51, No. 3, pp. 277-289.

  • Mac Nally R., Walsh C., Hierarchical partitioning public-domain software, Biodiversity and Conservation, 2004, Vol. 13, No. 3, pp. 659–660.

  • Manning P., Taylor G., Hanley M.E., Bioenergy, food production and biodiversity – an unlikely alliance?, Global Change Biology Bioenergy, 2015, Vol. 7, No. 4, pp. 570–576.

  • Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing: Synthesis. Washington, DC: Island Press. 2005. Available at: http://www.millenniumassessment.org/en/Reports.aspx# (June 28, 2021).

  • Mordkovich V.G., Zoological diagnostics of soils: Imperatives, purposes, and place within soil zoology and pedology, Biology Bulletin Reviews, 2014, Vol. 4, No. 5, pp. 404–411.

  • Perel' T.S., Rasprostranenie i zakonomernosti raspredeleniya dozhdevykh chervei fauny SSSR (Range and regularities in the distribution of earthworms of the USSR fauna), Moscow: Nauka, 1979, 272 p.

  • Pérez-Harguindeguy N., Chemistry and toughness predict leaf litter decomposition rates over a wide spectrum of functional types and taxa in central Argentina, Plant and Soil, 2000, Vol. 218, No. 1, pp. 21–30.

  • Pogrebnyak P.S., Lesorastitel'nye usloviya levoberezhnogo Poles'ya (Forest growth conditions of the left-bank Polesye), Trudy po opytnomu lesnomu delu Ukrainy, 1928, No. 10, pp. 46–78.

  • Pogrebnyak P.S., Osnovy lesnoi tipologii (Basics of forest typology), Kiev: Izd-vo AN USSR, 1955, 456 p.

  • Puly i potoki ugleroda v nazemnykh ekosistemakh Rossii (Pools and fluxes of carbon in terrestrial ecosystems of Russia), Moscow: Nauka, 2007, 315 p.

  • R Core Team R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing: Vienna, Austria. 2020. Available at: https://www.R-project.org/.

  • Rozanov B.G., Morfologiya pochv (Soil morphology), Moscow: Akademicheskii proekt, 2004, 432 p.

  • Salemaa M., Derome J., Nojd P., Response of boreal forest vegetation to the fertility status of the organic layer along a climatic gradient, Boreal Environment Research, 2008, Vol. 13, Suppl. B, pp. 48–66.

  • Sariyildiz T., Effects of tree canopy on litter decomposition rates of Abies nordmanniana, Picea orientalis and Pinus sylvestris, Scandinavian Journal of Forest Research, 2008, Vol. 23, No. 4, pp. 330–338.

  • Sariyildiz T., Küçük M., Litter mass loss rates in deciduous and coniferous trees in Artvin, northeast Turkey: Relationships with litter quality, microclimate, and soil characteristics, Turkish Journal of Agriculture and Forestry, 2008, Vol. 32, No. 6, pp. 547–559.

  • Schelfhout S., Mertens J., Verheyen K., Vesterdal L., Baeten L., Muys B., De Schrijver A., Tree species identity shapes earthworm communities, Forests, 2017, Vol. 8, No. 3, pp. 85.

  • Shevchenko N.E., Kuznetsova A.I., Teben'kova D.N., Smirnov V.E., Geras'kina A.P., Gornov A.V., Grabenko E.A., Tikhonova E.V., Lukina N.V., Suktsessionnaya dinamika rastitel'nosti i zapasy pochvennogo ugleroda v khvoino-shirokolistvennykh lesakh Severo-Zapadnogo Kavkaza (Succession dynamics of vegetation and storages of soil carbon in mixed forests of Northwestern Caucasus), Lesovedenie, 2019, No. 3, pp. 163-176.

  • Smirnova O.V., Khanina L.G., Smirnov V.E., Ekologotsenoticheskie gruppy v rastitel'nom pokrove lesnogo poyasa Vostochnoi Evropy (Eco-coenotic groups in the plant cover of forest zone in Eastern Europe), In: Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost' (Eastern European forest in the Holocene and modern history), Moscow: Nauka, 2004, Vol. 1, pp. 165-175.

  • Spurgeon D.J., Keith A.M., Schmidt O., Lammertsma D.R., Faber J.H., Land-use and land-management change: relationships with earthworm and fungi communities and soil structural properties, BMC Ecology, 2013, Vol. 13, No. 1, pp. 46.

  • Staaf H., Foliage litter turnover and earthworm populations in three beech forests of contrasting soil and vegetation types, Oecologia, 1987, Vol. 72, No. 1, pp. 58–64.

  • Sukachev V.N., Dylis N.V., Osnovy lesnoi biogeotsenologii (Fundamentals of forest biogeocoenology), Moscow: Nauka, 1964, 574 p.

  • Teben'kova D.N., Lukina N.V., Chumachenko S.I., Danilova M.A., Kuznetsova A.I., Gornov A.V., Gagarin Yu.N., Mul'tifunktsional'nost' i bioraznoobrazie lesnykh ekosistem (Multifunctionality and biodiversity of forest ecosystems), Lesovedenie, 2019, No. 5, pp. 341-356.

  • Utkin A.I., Biologicheskaya produktivnost' lesov (metody izucheniya i rezul'taty) (Biological productivity of forests (research methods and results)), Lesovedenie i lesovodstvo, 1975, Vol. 1, pp. 9–190.

  • www.cepl.rssi.ru/bio/flora/main.htm, (June 28, 2021).

  • Zaugol'nova L.B., Podkhody k otsenke tipologicheskogo raznoobraziya lesnogo pokrova (Approaches to assessing the typological diversity of forest cover), In: Monitoring biologicheskogo raznoobraziya lesov Rossii: metodologiya i metody (Monitoring of biological diversity of Russian forests: methodology and methods), Moscow: Nauka, 2008, pp. 36–58.

  • Zhang W., Chen D., Zhao C., Functions of earthworm in ecosystem, Biodiversity Science, 2007, Vol. 15, No. 2, pp. 142–153.