RUSSIAN JOURNAL OF FOREST SCIENCE, 2020, No. 2, 115126


THE POTENTIAL ABSORPTION OF CARBON BY TREES’ BIOMASS DURING THE RESTORATION OF RIPARIAN FORESTS
D. G. Zamolodchikov1, V. V. Kaganov1, O. N. Lipka2
1Center of Forest Ecology and Productivity, RAS
Profsoyuznaya st. 84/32 bldg. 14, Moscow, 117997, Russia
2World Wildlife Fund (WWF Russia)
Nikoloyamskaya st. 19,bldg. 3, Moscow, 109240 Russia
E-mail: dzamolod@mail.ru


Received 28 July 2019
A predictive system was developed for the assessment of carbon absorption by trees phytomass during the restoration of riparian forests in a valley of Ili river (Kazakhstan republic)/ The system comprises the constraint equations between the density of forest stand and their age; mean height and age; mean trees’ diameter and density; it includes the allometric constraint equations between trees phytomass and valuation parameters as well. The system allows to calculate the absorption and sequestration of carbon by the phytomass annually. The system was applied for the description of growth dynamics of desert poplar in three growth class variations, as well as the oleaster (Elaeagnus oxycarpa) and white willow. At the end of 30-years resforestation period the phytomass’ carbon will constitute: up to 50.14 t C ha-1 for the first-class desert poplar, 40.51 for the second-class, 35.79 for the third-class desert poplar, 15.61 for the oleaster 92.52 t C ha-1 for the white willow. The maximum absorption capacity age was different for various forest stands: 9 years for oleaster, 13 for first-class desert poplar, 16 years for second-class desert poplar and the white willow, 23 years for the third-class desert poplar. The system can be applied to predicting the carbon absorption by other species’ stands after finding the necessary parameters using the regression method or based on the assumption on start and maximum values of density and the mean height.
Keywords: reforestation, arid areas, riparian forests, trees phytomass, carbon absorption, forest stands growth, modeling, prediction.
Acknowledgement: The work was carried out with the support from the RSF № 19-77-30015 (forest cultures growth modeling and carbon absorption) and WWF Russia (forest restorative project planning).
DOI: 10.31857/S0024114820020114


REFERENCES



  • Baitulin I.O., Baitulin A.I., Belgibaeva G.I., Cokhranenie i vosstanovlenie poimennykh (tugainykh) lesov reki Cyrdar'ya (Conservation and restoration of floodplain (tugai) forests of the Syrdarya River), Ratsional'noe ispol'zovanie i sokhranenie lesnykh resursov (Rational Use and Conservation of Forest Resources), Proc. Conf., Bishkek, October 3-7, 2006, Bishkek: Ilim, 2006, Issue 21, pp. 47–51.

  • Cao S., Why large-scale afforestation efforts in China have failed to solve the desertification problem, Environmental Science and Technology, 2008, Vol. 42, No. 6, pp. 1826–1831.

  • Díez C.M., Moral J., Cabello D., Morello P., Rallo L., Barranco D., Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards, Frontiers in Plant Science, 2016, Vol. 7, Art. No. 1226, doi: 10.3389/fpls.2016.01226.

  • Espeland E.K., Muscha J.M., Scianna J., Kilian R., West N.M., Petersen M.K., Secondary invasion and reinvasion after Russian-olive removal and revegetation, Invasive Plant Science and Management, 2017, Vol. 10, No. 4, pp. 1-10, doi: 10.1017/inp.2017.36.

  • Fischer G., Prieler S., Van Velthuizen H.T., Biomass potentials of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia Biomass and Bioenergy, 2005, Vol. 28, No. 2, pp. 119–132, doi:10.1016/j.biombioe.2004.08.013.

  • Gorobets A.I., Tarankov V.I., Sizykh V.N., Sravnitel'naya otsenka uglerododeponiruyushchei i kislorodoprodutsiruyushchei funktsii dubravy i vetlyanika (Comparative estimation of deposition of carbon and allocation of oxygen in the oak grove and the forest stand of the willow), Lesnoi vestnik, 2009, No. 3, pp. 43–48.

  • Gorobets A.I., Tarankov V.I., Sizykh V.N., Sravnitel'naya otsenka uglerododeponiruyushchei i kislorodoprodutsiruyushchei funktsii dubravy i vetlyanika (Comparative estimation of deposition of carbon and allocation of oxygen in the oak grove and the forest stand of the willow), Lesnoi vestnik, 2009, No. 3, pp. 43–48.

  • IPCC, 2013: Summary for policymakers, In: Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge - New York: Cambridge University Press, 2013, 29 p.

  • Kajba D., Andrić I., Selection of willows (Salix sp.) for biomass production, South-East European Forestry, 2014, Vol. 5, No. 2, pp. 145-151, doi: http://dx.doi.org/10.15177/seefor.14-14.

  • Kofman G.B., Rost i forma derev'ev (Growth and form of trees), Novosibirsk: Nauka, 1986, 210 p.

  • Koropachinskii I.Y., Vstovskaya T.N., Drevesnye rasteniya Aziatskoi Rossii (Woody plants of Asian Russia), Novosibirsk: Izd-vo SO RAN, 2002, 707 p.

  • Kul' K., Kul' O., Dinamicheskoe modelirovanie rosta derev'ev (Dynamical simulation of the tree growth), Tallin: Valgus, 1989, 231 p.

  • Kuz'michev V.V., Zakonomernosti rosta drevostoev (Features of stand growth), Novosibirsk: Nauka, 1977, 160 p.

  • Lesica P., Miles S., Russian olive invasion into cottonwood forests along a regulated river in north-central Montana, Canadian Journal of Botany, 1999, Vol. 77, No. 8, pp. 1077–1083.

  • L'yuis K.S., Metody prognozirovaniya ekonomicheskikh pokazatelei (Industrial and business forecasting methods), Moscow: Finansy i statistika, 1986, 133 p.

  • Muratchaeva P.M.-S., Monitoring sostoyaniya drevesnykh porod v iskusstvennykh nasazhdeniyakh Tersko-Kumskoi nizmennosti (Monitoring of growth and condition of tree species inartificial plantings of Terek-Kuma lowland), Aridnye ekosistemy, 2014, Vol. 20., No. 1(58), pp. 39–44.

  • Riznichenko G.Y., Matematicheskie modeli v biofizike i ekologii (Mathematical models in biophysics and ecology), Moscow, Izhevsk: Institut komp'yuternykh issledovanii, 2003, 183 p.

  • Rogozin M.V., Razin G.S., Modeli dinamiki i modelirovanie razvitiya drevostoev (Dynamics models and modeling of tree stand development), Sibirskii lesnoi zhurnal, 2015, No. 2, pp. 50–70.

  • Rukovodyashchie ukazaniya po effektivnoi praktike dlya zemlepol'zovaniya, izmenenii v zemlepol'zovanii i lesnogo khozyaistva (Good Practice Guidance for Land Use, Land-Use Change and Forestry), MGEIK, 2003, available at: https://www.ipcc-nggip.iges.or.jp/public/gpglulucf/gpglulucf_languages.html (July 02, 2019).

  • Shah M., Masoodi T.H., Khan P.A., Wani J.A, Mir S.A., Vegetation analysis and carbon sequestration potential of Salix alba plantations under temperate conditions of Kashmir, India, Indian Forester., 2015, Vol. 141, No. 7, pp. 755–761.

  • Shvidenko A.Z., Shchepashchenko D.G., Nil'sson S., Bului Yu.I., Sistema modelei rosta i dinamiki produktivnosti lesov Rossii (The system of growth models and dynamics of forest productivity in Russia), Lesnoe khozyaistvo, 2003, No. 6, pp. 34–38.

  • Shvidenko A.Z., Shchepashchenko D.G., Nil'sson S., Bului Yu.I., Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii (normativno-spravochnye materialy) (Tables and models of the growth and productivity of plantations of the main forest-forming species of Northern Eurasia (normative reference materials)), Moscow: Federal'noe agentstvo lesnogo khozyaistva, Mezhdunar. institut prikladnogo sistemnogo analiza, 2006, 886 p.

  • Sipovich V.V., Issledovanie khoda rosta turangovykh nasazhdenii (Research of the Asiatic poplar stand development), Izvestiya vysshikh uchebnykh zavedenii, Lesnoi zhurnal, 1963, No. 2, pp. 27–29.

  • Sum M., Lin Q., A revision of Elaeagnus L. (Elaeagnaceae) in mainland China, Journal of Systematics and Evolution, 2010, Vol. 48, No. 5, pp. 356-390, doi: 10.1111/j.1759-6831.2010.00085.x.

  • Tsvelev H.H., O rodakh Elaeagnus i Hippophae (Elaeagnaceae) v Rossii i sopredel'nykh stranakh (On the genera Elaeagnus and Hippophae (Elaeagnaceae) in Russia and adjacent states), Botanicheskii zhurnal, 2002, Vol. 87, No. 11, pp. 74–86.

  • Turchin T.Y., Ermolova A.S., Pichueva G.V. Prizhivaemost' i rost aborigennykh i introdutsirovannykh vidov drevesnykh rastenii na srednebugristykh peskakh v stepnoi zone (Survival and Growth of Aboriginal and Introduced Woody Plant Species at Middle Hill Sandy Sites in Steppe Zone), Lesokhozyaistvennaya informatsiya, 2017, No. 3, pp. 20–34, available at: http://lhi.vniilm.ru/index.php/ru/soderjanie-2017-3 (July 08, 2019).

  • Usol'tsev V.A., Biologicheskaya produktivnost' lesoobrazuyushchikh porod v klimaticheskikh gradientakh Evrazii (k menedzhmentu biosfernykh funktsii lesov) (Biological productivity of forest-forming species in Eurasia's climatic gradients (as related to supporting decision-making processees in forest management)), Yekaterinburg: Izd-vo UGLTU, 2016, 383 p.

  • Usol'tsev V.A., Fitomassa lesov Severnoi Evrazii. Normativy i elementy geografii (Forest biomass of Northern Eurasia. Norms and ekements of geography), Yekaterinburg: Izd-vo UrO RAN, 2002, 762 p.

  • Usol'tsev V.A., Fitomassa lesov Severnoi Evrazii: predel'naya produktivnost' i geografiya (Forest biomass of northern Eurasia: the limits of productivity and their geography), Yekaterinburg: Izd-vo UrO RAN, 2003, 406 p.

  • Utkin A.I., Zamolodchikov D.G., Gul'be T.A., Gul'be Ya.I., Allometricheskie uravneniya dlya fitomassy po dannym derev'ev sosny, eli, berezy i osiny v evropeiskoi chasti Rossii (Allometric equations for phytomass based on the data on pine, spruce, birch and aspen trees in europaen Russia), 1996, No. 6, pp. 36–46.

  • Weger J. H.P., Bubeník J., Yield and fuel characteristics of willows tested for biomass production on agricultural soil, Research in Agricultural Engineering, 2016, Vol. 62, No. 4, pp. 155-161, doi: 10.17221/12/2014-RAE.

  • www.catalogueoflife.org/annual-checklist/2019 (July 8, 2019).

  • Zalesov S.V., Azbaev B.O., Dancheva A.V., Rakhimzhanov A.N., Razhanov M.R., Suyundikov Zh.O., available at: https://www.science-education.ru/ru/article/view?id=13438 (July 08, 2019).

  • Zamolodchikov D.G., Otsenka pula ugleroda krupnykh drevesnykh ostatkov v lesakh Rossii s uchetom vliyaniya pozharov i rubok (An estimate of the carbon pool of coarse woody debris in forests of Russia with fire and cuts impact included), Lesovedenie, 2009, No. 4, pp. 3–15.

  • Zamolodchikov D.G., Utkin A.I., Chestnykh O.V., Koeffitsienty konversii zapasov nasazhdenii v fitomassu osnovnykh lesoobrazuyushchikh porod Rossii (Conversion of stand volumes to phytomass: the factors for the dominant forest forming species of Russia), Lesnaya taksatsiya i lesoustroistvo, 2003, No. 1, pp. 119–127.

  • Zhou X., Brandle J.R., Schoeneberger M.M., Awada T., Developing above-ground woody biomass equations for open-grown, multiple-stemmed tree species: Shelterbelt-grown Russian-olive, Ecological Modelling, 2007, Vol. 202, No. 3–4, pp. 311–323, doi:10.1016/j.ecolmodel.2006.10.024.

  • Zianis D., Muukkonen P., Mäkipää R., Mencuccini M., Biomass and stem volume equations for tree species in Europe, Silva Fennica Monographs 4, Tampere: Tammer-Paino Oy, 2005, 63 p.